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Abstract—Cultural differences in conformity pressures play a
critical role in whether and how a society can effectively adopt
a cooperative norm and fight against an evolving threat. Using
an agent-based evolutionary game theoretic model, our results
show that in general, tight societies with stronger conformity
pressures adopt a cooperative norm faster than loose societies.
As a consequence, the threat ends up lower in tight societies.
However, high conformity pressures in tight societies are also a
double-sided sword. Sometimes, a tight society may conform to
a defective norm at the beginning of a threat, leading to a faster
escalation of threat at the early stage of a threat. Nevertheless, as
threat increases, tight societies are able to switch to a cooperative
norm quickly and slow down the growth of threat, so eventually
the threat levels in tight societies are close to or lower than that
in loose societies. Our findings bring insight into how cultural
differences in conformity pressures influence different societies’
success in dealing with collective threats.

Index Terms—cultural tightness-looseness, cooperation, threat,
conformity pressure, evolutionary game theory

I. INTRODUCTION

Societal threats are ubiquitous. Threats, whether they are
earthquakes, floods, warfare or pandemics, diminish people’s
resources and well-being [1]. To overcome collective threats,
cooperation is essential. The COVID-19 pandemic is a case in
point. Seventeen science and medical academies have issued
a statement emphasizing the urgency of international cooper-
ation in responding to the global pandemic [2]. Cooperative
behaviors on the individual level, such as wearing a face mask
[3] and practicing social distancing [4]–which are costly for
an individual to make but have a greater benefit for others–are
also critical for slowing down the spread of the threat.

However, not all societies are equally successful in dealing
with threats [5], raising the question of what factors are critical
for fostering cooperation in such conditions. Here we focus on
social norms, or unwritten rules for behavior, and argue that
they play a double-sided role in the evolution of cooperation
that is beneficial for the society. On the one hand, when an
individual believes there is a cooperative norm in the society,
the fear of social ostracism can effectively constrain them
from free-rider behavior [6], [7]. On the other hand, social
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norms sometimes lead people to adopt maladaptive behaviors.
For instance, teenagers may consume an excessive amount of
alcohol or engage in irresponsible sexual behavior because
they believe others endorse these behaviors [8], [9].

The strength of social norms and the pressure to conform
to them further amplify the double-sided effect of social
norms. Some societies have a tighter culture, wherein people
feel more pressure to conform with the social norms while
some other societies have a looser culture, where there is
less pressure to conform [10]–[12]. If the social norm is a
beneficial one, strong pressure to conform with the norm in a
tight society amplifies adherence to it. However, if the norm
is maladaptive, the strong pressure to conform to it may also
lead to its widespread adaption, inhibiting the population from
pursuing more beneficial behaviors. For example, [13], [14]
compared the norm change in a tight vs. a loose society and
found that when the majority of the population are given a
choice to adopt a behavior that has higher economic value,
the pressure to conform with the current norm hampers the
norm change in a tight society. However, once the optimal
behavior has become the norm, the pressure to conform with
the new norm motivates people in a tight society to adopt the
beneficial behavior very rapidly.

Therefore, cultural differences in tightness-looseness play a
critical role in whether and how a society can effectively adopt
a cooperative social norm and fight against an evolving threat.
Indeed, a recent study has indicated that cultural tightness is
associated with early success in dealing with the COVID-19
pandemic threat. With an agent-based model, [5] indicated that
the conformity pressure in a tight society is helpful for the
forming of a cooperative norm especially under medium to
high levels of threat, while it is not as needed under low levels
of threat.

Although [5] has revealed the role of cultural tightness-
looseness in the evolution of cooperative norms under threat,
it has some limitations in its model framework. First, in
the model in [5], the threat in the environment increases at
a constant speed and this speed is independent of people’s
cooperative behavior. This assumption, however, is not always
realistic. In many situations, cooperative behavior may help
slow down the growth of threat or even decrease the level of



threat. For example, practicing social distancing helps flatten
the curve in a pandemic [15], and reducing one’s carbon
footprint helps alleviate climate change [16]. It is important
to take into consideration the impact of cooperation on threat
to the extent this may be one of the reasons that lead different
societies to have different levels of threat.

Second, [5] assumes that threat increases linearly as a
function of time. However, many threats, such as a pandemic
threat like COVID-19, escalate exponentially. They increase at
a low speed at the beginning but start to increase dramatically
after some time. It is important to take this non-linear nature
of threat escalation into account because in an exponentially
increasing threat, the timing of interventions is important.
If a society fails to take rapid and intense enough actions
to reduce threat at an early stage, they may miss the best
timing to control it [17]. [5] showed that although a tight
society tends to have more cooperation than a loose society,
this difference is not pronounced until threat increases to a
medium-to-high level. Moreover, [5] found that when threat
is low, tight societies may have even less cooperation than
loose societies because the people in them may conform to
a wrong norm (i.e., defective norm). In this case, a tight vs.
loose society may have very different trajectories of threat
escalation and thus have different levels of threat eventually.
Therefore, accounting for the nonlinear increase of threat and
the dynamic influence of cooperative behaviors on the rates of
change of threat is essential for understanding how tight vs.
loose societies may be differently successful in their collective
fight against threat. The different trajectories of threat change,
consequently, will have further effects on the cooperative
norms in different societies [18]. Thus, we are interested in
how the levels of threat and cooperative norms co-evolve in
different societies.

Using an agent-based evolutionary game theoretic (EGT)
model, this paper combines previous work on social norms,
cooperation, and threat, and aims to understand the following
questions: 1) Under an escalating threat where collective
cooperation can help slow down the escalation of threat, how
will cooperative norms change in tight vs. loose societies? 2)
How will the threat levels change in tight vs. loose societies
as a consequence of their different cooperative norms?

This paper will be based on the model in [5] but will
expand it by assuming a dynamic threat, the increasing rate of
which varies as a function of the evolving cooperation rate in
the population. Specifically, we assume that the more people
cooperate in the population, the slower the threat increases. If
everyone in the population is practicing a cooperative norm,
the rate-of-increase of threat will be very low, or may even
be negative. On the other hand, if few people cooperate, the
rate-of-increase will be high. We run multiple simulations
in which people (i.e., agents) play cooperation games with
each other in societies with different levels of conformity
pressure. In all the simulations, threat starts at a very low
level but dynamically changes across time depending on the
proportion of cooperative behavior that agents perform in
their cooperation games (i.e., cooperation rate). We compare

the cooperation rates and the trajectories of threat escalation
in these societies in order to study the impact of cultural
tightness-looseness on the evolution of cooperative norms
under threat as well as how the levels of threat change as
a consequence of the change in cooperative norms.

II. METHODS

A. An Introduction to EGT

In this paper, we use an agent-based EGT simulation model
to address the research questions. An EGT model is an
application of population dynamical methods to game theory.
It was introduced by evolutionary biologists but has been
increasingly used to model the evolution of human behavior
[19]. A typical process of an agent-based EGT simulation is
as follows: A population of agents start with some assigned
strategies. In each iteration, agents will interact with each
other in a formal game, such as a cooperation game. Agents’
actions in the game will be decided by their strategies and
they will get their corresponding payoffs from the game.
The game’s payoffs represent the individuals’ evolutionary
fitness–as with natural selection in biological evolution, in
each generation, some agents die and some agents are born,
but agents with higher fitness are more likely to reproduce
their strategies to the next generation. By repeating the game
iterations (i.e., generations), we will be able to observe the
evolutionary trajectories of different strategies and thus un-
derstand the change of behaviors in the population. An EGT
simulation also allows us to manipulate the characteristics of
the interaction environment, such as changing the threat and
conformity pressure in the environment [18]. Thus, we will be
able to observe how different behaviors evolve under different
environmental circumstances.

B. Agent Interaction and Strategy Updating

In our EGT model, we start a simulation with 400 agents
embedded in a 20×20 wrap-around grid. An agent has either a
cooperate or defect strategy, with both strategies being equally
likely at the beginning of the simulation. Then the simulation
repetitively performs the following steps as in [5]:

1) Immigration: At a randomly chosen empty site in the
grid, if there is any, an agent with a random strategy appears.1

2) Interaction: Agents play a typical cooperation game with
all their immediate neighbors on the grid and get payoffs from
the interactions, as shown in Table I. All the pairs in the grid
play the game in a random order.

TABLE I
PAYOFF MATRIX OF THE COOPERATION GAME

Cooperate Defect
Cooperate (2, 2) (-1, 3)

Defect (3, -1) (0, 0)

In addition to this interaction payoff, agents also receive
a base payoff from the environment. The level of threat is

1At the beginning of a simulation, there is no empty site. However, there
will be some empty sites as the simulation goes on because of Step 4.



manipulated as a reduction of τ from everyone’s payoff, as in
[18]. Thus, the final payoff of an agent, π, is as defined in (1).
The value of threat τ dynamically changes depending on the
cooperation rate in the population, which will be elaborated
in the next section.

π = base payoff + interaction payoff–τ (1)

This final payoff is transformed into an agent’s fitness, f(π),
based on the principle of diminishing marginal utility [20],
[21] as shown in (2):

f(π) =

{
1− e−0.1·π ifπ ≥ 0;

0 ifπ < 0.
(2)

3) Reproduction: Each agent is chosen in a random order
and given a chance to reproduce with a probability equal to its
fitness f(π). Reproduction means creating an offspring agent
in a randomly selected adjacent neighboring empty site, if
there is any. This offspring usually has the same strategy as
their parent agent but with a small probability µ = 0.05, this
offspring’s strategy will be randomly set as either “cooperate”
or “defect”, resembling the mutation dynamics in evolution.

4) Death: Each agent has a probability d to die. The death
probability d of an agent is a function of its fitness, f(π), as
defined by (3). The lower one’s fitness is, the higher probably
this agent will die. A dead agent will be removed from the
grid, leaving an empty site until a new-born agent takes the
place.

d = e−2.3·f(π) (3)

5) Conform: Each agent has a probability of l to conform to
the modal strategy in their neighborhood, independent of the
fitness of the strategies. This process resembles the conformity
pressure in a society. A larger l represents a tighter society
which has greater conformity pressure. The neighborhood of
an agent is defined as the eight grid sites that located around
the agent. If there are equal numbers of cooperators and
defectors in the neighborhood, the agent randomly selects from
the multiple modal strategies to adopt.

We ran the above five steps repeatedly for 15000 iterations
in each simulation run.

C. Change of Threat

We manipulate the level of threat τ in the environment based
on the assumption that cooperative behavior in the population
influences the rate of change of threat. The level of threat
starts from a low level τ0 = 5 and changes stepwise every
500 iterations. For example, the first time that threat changes
is when Iteration = 500, the second time that threat changes is
when Iteration = 1000, and the last time that threat changes is
when Iteration = 14500. At each changing time, the new level
of threat can be represented by (4) and (5):

τi+1 = τi · (1 + δi) (4)

δi =
δmax − δmin

ln 2
· ln (2− κi) + δmin (5)

τi denotes the threat level at the current time. τi+1 denotes
the new level of threat throughout the following 500 iterations.
The rate of change of threat, δi, varies as a function of the
cooperation rate κi at the moment, where 0 < κi < 1.
(5) is a monotonic decreasing function depicting that when
the cooperation rate is higher in the population, the rate of
change of threat is lower. We choose a concave function
between κi and δi based on the assumption that as more
and more people start to cooperate, the impact of cooperation
proliferates. However, we will show the robustness of our
findings using a linear function between κi and δi, too.
δmax and δmin are constants. δmax is a positive number,

representing the maximum rate of change of threat. δi = δmax
when κi = 0. This set-up depicts that if no one in the popula-
tion cooperates at the current moment, threat will increase at
its maximum rate. In all the simulations, we set δmax = 0.1.
δmin, which is smaller than δmax, represents the minimum
rate of change of threat. δi = δmin when κi = 1. This
set-up depicts that if everyone in the population cooperates
at the current moment, threat will change at its minimum
rate. δmin can be either a positive or a negative number. If
δmin is negative, it depicts the situation where if everyone
cooperates, they will be able to decrease the level of threat. If
δmin is positive, it depicts the situation where even if everyone
cooperates, the threat will still escalate, just at a lower rate.
This depicts the situations where mass cooperation can only
help slow down the escalation of a very severe threat but not
fully stop or reduce it. We will try different values of δmin
in different simulations, which will be elaborated in the next
section.

D. Key Variables and Simulation Runs

There are two key variables in this model. The first one
is cultural tightness-looseness, which is manipulated by the
different levels of conformity pressure l. In this paper, we
implemented a number of cultural tightness-looseness values,
l = [0.05, 0.1, 0.15, 0.2, 0.3].

The second variable is the type of threat, which is manipu-
lated by δmin. We implemented two different values of δmin.
One is positive and the other is negative, δmin = [−0.01, 0.01].
When δmin = −0.01, it depicts a reversible threat where when
everyone cooperates, threat will decrease by 1% per 500 iter-
ations. When δmin = 0.01, it depicts an ever-increasing threat
where even if everyone cooperates, the threat still increases
by 1%. Under this ever-increasing threat, full cooperation in
the population can only slow down the escalating of threat,
but not stop it.

For both types of threat, we ran 40 simulation runs under
each level of cultural tightness-looseness. Therefore, we have
40 × 2 × 5 = 400 simulation runs in total. Each simulation
contains 15000 iterations. In each simulation, we track the
proportion of cooperative behavior and the level of threat
at each time point, so that we can track the trajectories of



the evolution of cooperative behavior and threat growth in
different societies.2

III. RESULTS

A. Overall Cooperation Rates and Threat Growth

Fig. 1 shows the change of cooperation rates and threat
across time in societies with different levels of tightness-
looseness. A larger l represents a tighter society. Each line
depicts the average of 40 simulation runs. Our results support
the findings of [5]. The overall cooperation rates are low at
the early stage of a threat but increase as threat escalates.
Tighter societies switch to a cooperative norm earlier than
looser societies, and ultimately, cooperation rates are higher
in tighter societies. Moreover, tighter societies overall have
lower levels of threat as time passes.

B. Two Patterns Among Tight Societies

As noted above, conformity pressures may play a double-
sided role in the adoption of cooperative norms. [5] has
indicated that when threat is low, tight societies may show
two different patterns of trajectories of cooperative behavior,
wherein they may either be highly cooperative or highly
defective at the early stage of a threat, depending on which
norm they randomly conform to early on. As a consequence,
the two kinds of tight societies may show very different
patterns in their trajectories of threat change, too.

To address this, in the 40 simulation runs under each level of
tightness, we separated the single simulation runs which have a
cooperative norm at the beginning from the runs which have a
defective norm at the beginning. The criterion is as follows: in
a single simulation run, if the average cooperation rate among
the first 10000 iterations is above or equal to 0.5, this run is
categorized as having a cooperative norm at the beginning. If
the average cooperation rate among the first 10000 iterations
is below 0.5, this run is categorized as having a defective norm
at the beginning.

Table II shows the number of runs with cooperative vs.
defective norms at the beginning of the simulations under each
condition. When tightness level is low (l = 0.05 or 0.1), all
of the single runs have a defective norm at the beginning.
However, when tightness level is high, some of the single runs
have a cooperative norm while the others have a defective
norm at the beginning.

TABLE II
NUMBER OF RUNS WITH COOPERATIVE VS. DEFECTIVE NORMS

l δmin = 0.01 δmin = −0.01
Cooperative Defective Cooperative Defective

0.05 0 40 0 40
0.1 0 40 0 40
0.15 8 32 9 31
0.2 12 28 13 27
0.3 17 23 19 21

2All the codes for the simulations are available at https://osf.io/enxum/
?view only=091870735c80491b85ce814e4ee1d5a5

C. Cooperation Rates and Threat Growth in Tight vs. Loose
Societies

We averaged the two kinds of runs among tight societies
separately. In Fig. 2, the yellow line depicts the average of the
simulation runs with a cooperative norm at the beginning in
a tight society, where l = 0.2 (Tight-C). The red line depicts
the average of the simulation runs with a defective social norm
at the beginning (Tight-D). The shadows depict the standard
deviations of these runs.

Fig. 2 also compares the cooperation rates and threat levels
in these two kinds of tight societies with a loose society
(l = 0.05). In the loose society, all the simulation runs have
a defective norm at the beginning, so the average of them is
represented by a single blue line.

In the Tight-C society, the cooperation rate is always high
throughout the simulation. The Tight-D society has the lowest
cooperation rate at the early stage, but as threat escalates to
a moderate level, it quickly switches to a cooperative norm.
The loose society starts with a moderate cooperation rate and
eventually switches to a highly cooperative norm too, but the
switch happens much later than the Tight-D society.

For the change of threat, the Tight-C society always has the
lowest threat level. For an ever-increasing threat (δmin = 0.01)
as shown on the left of Fig. 2, the threat level in the Tight-D
society first increases fast and is higher than that in the loose
society. However, as the Tight-D society starts to switch to a
cooperative norm, the escalation of threat slows down and the
threat level in the Tight-D society eventually gets closer to that
in the loose society. Note that at the late stage, the cooperation
rates in both Tight-D and loose societies fall to around 0.5 and
become noisy. This is because the threat levels are very high
at this point, and the majority of the population dies out at
the end of this ever-increasing threat. For a reversible threat
(δmin = −0.01) as shown on the right of Fig. 2, the threat
level in the Tight-D society is the highest at the beginning,
but as they switch to a cooperative norm, the escalation of
threat is well controlled. On the contrary, in the loose society,
though it has a relatively low threat at the beginning, because
it fails to switch to a cooperative norm timely, the threat ends
up the highest among the three kinds of societies.

In Fig. 2, we use the plots under l = 0.05 and l = 0.2
as examples for loose and tight societies. Other values of l
generally show similar patterns. We also tested the robustness
of the findings by replacing (5) with a linear function between
cooperation rate κi and the rate of change of threat δi, as
shown in (6). The findings remain robust.

δi = κi · δmin + (1− κi) · δmax (6)

IV. DISCUSSION

Cultural differences in conformity pressures play a critical
role in whether and how a society can effectively adopt a
cooperative norm and fight against an evolving threat. Using an
agent-based EGT model, our results show that overall, under
an evolving threat, tight societies with stronger conformity
pressures adopt a cooperative norm faster than loose societies.

https://osf.io/enxum/?view_only=091870735c80491b85ce814e4ee1d5a5
https://osf.io/enxum/?view_only=091870735c80491b85ce814e4ee1d5a5


Fig. 1. Trajectories of cooperation rates and threat growth in different societies.

Fig. 2. Trajectories of cooperation rates and threat growth in tight vs. loose societies. Each line is the average trajectory of multiple runs. The shadows show
standard deviations. In the tight societies, l = 0.2. In the loose society, l = 0.05.

As a consequence, in general, the threat ends up lower in tight
societies. However, we also show that the high conformity
pressures in tight societies is a double-sided sword especially
at the early stage of threat. Sometimes, a tight society may
conform to a defective norm at the beginning of a threat,
which leads to a faster escalation of threat at the beginning.
Nevertheless, as threat increases, tight societies are able to
switch to a cooperative norm quickly and slow down the
growth of threat, so eventually the threat levels in tight
societies are close to or lower than those in loose societies.

Our findings bring insight into how cultural differences in
conformity pressures influence different societies’ success in
dealing with collective threats.

We note that our model has several limitations. First, our
model is based on the assumption that cooperation among
population helps slow down threat growth or reduce threat. In
some cases, this is a justified assumption. For example, practic-
ing social distancing helps flatten the curve in a pandemic [15].
However, in some other cases, this assumption may not be
justified. Our model is not applicable for the situations where



cooperation does not have a clear impact on threat. Second, we
assume an exponentially increasing threat. We note that not all
kinds of threats in the real world increase in this way. Third, in
our model, we assume that cooperation rate is the only factor
that influences changes in the rate of threat. This is obviously
not necessarily realistic. In the real world, factors such as new
technologies, vaccine, governmental interventions, changes in
climate, availability of resources, etc., can all have substantial
impacts on the trajectories of threat growth. These factors
may interact with cultural tightness-looseness and cooperative
norms, but this is beyond the scope of this paper. Finally, as
any simulation work, this model is an oversimplification of the
real world. The set-ups in this model, such as the manipulation
of threat and the cooperation game, are highly abstract. We
don’t intend to represent any specific threat or behavior in
real life. Neither do we intend to predict the threat change in
any specific society. Validation with empirical data is needed
if future research wants to compare the findings of this paper
with real world phenomena.
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